
ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math.

Prof. Hiren Patel, Ph.D.

Prof. Werner Deitl, Ph.D.

© 2020 by the above. Some rights reserved.

Libraries and calling
functions

2
Libraries and calling functions

Outline

• In this lesson, we will:

– Describe the concept of a library

– Look at the C math library

– Look at the global variables defined in that library

– Describe a function declaration

– Look at how to call a function with arguments

– Understand how to use the returned value

– Look at a number of examples

3
Libraries and calling functions

Using other code

• In our examples so far, we have performed

– Arithmetic, comparison and logical operations

– Assignments

– Conditional statements and repetition statements

• How do we use someone else’s code?

– Suppose we are simulating a cyclic system and require the use of
trigonometric functions?

4
Libraries and calling functions

Review of functions

• Recall from secondary school that functions took arguments:

sin(x) ln(x) gcd(m, n)

– For example, you may have used

sin(p/6) ln(3) gcd(15, 18)

• In secondary school, you may have said:

– The sine function takes a real value as an argument and returns a
real value on the interval [–1, 1]

– The natural logarithm takes a positive real value as an argument and
returns a real value

– The GCD takes two integers and returns a positive integer

5
Libraries and calling functions

Functions in C++

• A function in C++ is a body of instructions that:

– Allows you to specify certain parameters

– Calculates or returns a value based on those parameters

• For example, there are C++ functions that calculate:

sin(x) ln(x) gcd(m, n)

• Functions avoid the need to reinvent the wheel

– E.g., someone else has already authored the trigonometric functions

6
Libraries and calling functions

Libraries

• The solution for collecting related functions together for re-use in
C++ is a library

– Suppose you need information on something:

• You go to an appropriate library, and access that book

– A C++ library can be

• A collection of functions that you can call from your program

• A collection of global variables you can access

• Other objects and classes associated with object-oriented design

– We will see this later in this course

7
Libraries and calling functions

Libraries

• We will examine the C math library

– This is a collection of mathematical constants and functions

• You access the C math library by including

#include <cmath>

• As you may guess, iostream is another library

#include <iostream>

8
Libraries and calling functions

Global variables

• First, the global variables, all of type double:

M_E e 2.71828182845904523536

M_LOG2E log2(e) 1.44269504088896340736

M_LOG10E log10(e) 0.434294481903251827651

M_LN2 ln(2) 0.693147180559945309417

M_LN10 ln(10) 2.30258509299404568402

M_PI p 3.14159265358979323846

M_PI_2 p/2 1.57079632679489661923

M_PI_4 p/4 0.785398163397448309616

M_1_PI 1/p 0.318309886183790671538

M_2_PI 2/p 0.636619772367581343076

M_2_SQRTPI 2/√p 1.12837916709551257390

M_SQRT2 √2 1.41421356237309504880

M_SQRT1_2 1/√2 0.707106781186547524401

9
Libraries and calling functions

Example

• These can be used in a program:
#define _USE_MATH_DEFINES // This is required for some IDEs and compilers

#include <cmath>

#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

double radius{};

std::cout << "Enter the radius of a sphere: ";

std::cin >> radius;

double area{4.0*M_PI*radius*radius};

double volume{(4.0/3.0)*M_PI*radius*radius*radius};

std::cout << "The surface area is " << area << std::endl;

std::cout << "The volume is " << volume << std::endl;

return 0;

}

Output:
Enter the radius of a sphere: 2

The surface area is 50.2655
The volume is 33.5103

10
Libraries and calling functions

C++ 20

• In C++20, a new library was added, with #include <numbers>

e

log2e

log10e

pi

inv_pi

inv_sqrtpi

ln2

ln10

sqrt2

sqrt3

inv_sqrt3

egamma

phi

11
Libraries and calling functions

Function declarations

• The C math library also contains a number of functions you can use

– Each function is described by the function declaration

– The function declaration for the sine function is

double sin(double x);

– The function that calculates xy is

double pow(double x, double y);

It takes a single float
as an argument

It evaluates to or
returns a float

It takes two floats
as arguments

It evaluates to or
returns a float

12
Libraries and calling functions

Function declarations

• If this library had a gcd function, its function declaration would be:

int gcd(int m, int n);

• The function declaration may also be described as the:

– signature

– prototype

– interface

of the function

• You have already seen one function declaration in this course:

int main();

It takes two integers
as arguments

It evaluates to or
returns an integer

13
Libraries and calling functions

Trigonometric functions

• Some function declarations in the cmath library are:

double cos(double x);

double sin(double x);

double tan(double x);

double acos(double x);

double asin(double x);

double atan(double x);

double atan2(double y, double x);

• Immediately, you may notice:

– If you want sec(x), you must use 1/cos(x)

– More interesting is atan2(…):

• It returns tan–1(y/x), but takes into account the sign of y and x

• This allows, for example, x = 0

14
Libraries and calling functions

Trigonometric functions

• Here are examples of calling functions

– That is, we are calling the function with an argument or arguments
#define _USE_MATH_DEFINES

#include <cmath>

#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

double x{};

std::cout << "Enter a real value 'x': ";

std::cin >> x;

std::cout << " sin(" << x << ") = " << std::sin(x) << std::endl;

std::cout << " cos(" << x << ") = " << std::cos(x) << std::endl;

std::cout << "atan(" << x << ") = " << std::atan(x) << std::endl;

return 0;

}

Output:
Enter a real value 'x': 3.14

sin(3.14) = 0.00159265
cos(3.14) = -0.999999
atan(3.14) = 1.26248

15
Libraries and calling functions

Functions calls in arithmetic expressions

• In any arithmetic expression where you could have used a float or
local variable of type float, you can also use a call to a function that
has a return type double

int main() {

double x{};

std::cout << "Enter a real value 'x': ";

std::cin >> x;

double y{std::sin(x) + 1.0};

std::cout << "sin(" << x << ") + 1 = " << y << std::endl;

y = std::sin(std::asin(x));

std::cout << "sin(asin(" << x << ")) = " << y << std::endl;

y = std::cos(M_PI_2 - std::asin(x));

std::cout << "cos(pi/2 - asin(" << x << ")) = " << y << std::endl;

return 0;

}

Output:
Enter a real value 'x': 0.32

sin(0.32) + 1 = 1.31457
sin(asin(0.32)) = 0.32
cos(pi/2 - asin(0.32)) = 0.32

16
Libraries and calling functions

Hyperbolic, exponential
and logarithmic functions

• Other functions in the cmath library are:
double cosh(double x);

double sinh(double x);

double tanh(double x);

double acosh(double x);

double asinh(double x);

double atanh(double x);

double exp(double x);

double log(double x); // calculates ln(x)

double log10(double x); // calculates log (x)

// 10

17
Libraries and calling functions

Other functions

• Other functions in the cmath library are:
// y

double pow(double x, double y); // Computes x

double sqrt(double x); // The square root of x

double cbrt(double x); // The cube root of x

// _________

// / 2 2

double hypot(double x, double y) // \/ x + y

double ceil(double x); // Least integer greater than or equal to x

double floor(double x); // Greatest integer less than or equal to x

double trunc(double x); // Remove the fractional part of x

double round(double x); // Round x to the nearest integer

double abs(double x);

Calling sqrt(3.2) is the same as pow(3.2, 0.5)
Calling cbrt(3.2) is the same as pow(3.2, 1.0/3.0)

18
Libraries and calling functions

A nice example
int main() {

double a{};

std::cout << "Enter a real value 'a': ";

std::cin >> a;

double b{};

std::cout << "Enter a real value 'b': ";

std::cin >> b;

int n{};

std::cout << "How many intervals? ";

std::cin >> n;

double h{(b - a)/n};

for (int k{0}; k <= n; ++k) {

std::cout << "(" << a + k*h << ", "

<< std::sin(a + k*h) << ")" << std::endl;

}

return 0;

}

Output:
Enter a real value 'a': 2.5
Enter a real value 'b': 3.7
How many intervals 'n': 6

(2.5, 0.598472)
(2.7, 0.42738)
(2.9, 0.239249)
(3.1, 0.0415807)
(3.3, -0.157746)
(3.5, -0.350783)
(3.7, -0.529836)

n intervals

n + 1 equally spaced points

19
Libraries and calling functions

Aside

• Note the loop had an integer index:
for (int k{0}; k <= n; ++k) {

std::cout << "(" << a + k*h << ", "

<< std::sin(a + k*h) << ")" << std::endl;

}

• Would this work?
for (double x{a}; x <= b; x += h) {

std::cout << "(" << x << ", "

<< std::sin(x) << ")" << std::endl;

}

• It fails because h is only approximately, but slightly larger than

– Consequently, adding h to x a total of n times results
in something greater than b

– It’s actually the next-largest floating-point number larger than b

b a

n

20
Libraries and calling functions

An important takeaway

• To use a function, all you need to know is:

– The function declaration, which tells you

• How many and the types of the arguments

• The type of the return value

– A description of what the function is supposed to accomplish

• If the actual behavior of the function does not match the description,

this is a bug; that is, a situation where the expected returned value

does not match the actual returned value

• As long as you trust the author of the function,

you don’t have to know how the function is implemented

– You probably shouldn’t care, either…

21
Libraries and calling functions

Summary

• Following this lesson, you now:

– Understand that libraries in C++ can contain global variables and
functions

– Know how to look at the function declaration and call that function

– Know what you can do with the value returned by a function

– Are aware of the C math library and some of its contents

– Know that you can use a function

without understanding how it was implemented

22
Libraries and calling functions

References

[1] Cplusplus.com

http://www.cplusplus.com/reference/cmath/

23
Libraries and calling functions

Acknowledgments

None so far.

24
Libraries and calling functions

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

25
Libraries and calling functions

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

